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Abstract— Direct torque control (DTC) has become a popular 

technique for brushless motor control because it provides fast 

dynamic torque response. Hysteresis band control is the most 

popular techniques used in the DTC BLDC motor drive caused 

the simplest technique. However the conventional DTC have 

problems as switching frequency that varies with operating 

conditions and high torque ripple. This paper presents direct 

torque control (DTC) of BLDC motor with constant switching 

frequency torque controller. The torque ripple will get reduced 

by this method constant switching frequency operation. The 

feasibility of this method in minimizing the torque ripple is 

verified through some simulation results. 

 

Keywords—component; Direct torque control (DTC), constant 

switching frequency, Brushless DC (BLDC). 

I. INTRODUCTION  

A few years, many researchers studied about direct 

torque control (DTC) of brushless DC (BLDC) motor. Motor 

drive evolves from DC drive, Scalar Frequency Control, Flux 

Vector Control and finally DTC comes into the picture [1]. 

The improvement most focuses on the system performance, 

simplicity and reliability. The first vector control was 

introduced back in 1972 by Hasse, Blaske and Leonhard 

which named Field Oriented Control (FOC) [2]. The torque 

and flux of FOC are controlled corresponded to the producing 

current components (i.e. ids & iqs) which requires frame 

transformer, knowledge of machine parameters and current 

regulated Pulse Width Modulation. 

Direct torque control (DTC) was first introduced in 

Japan by Takahashi and Nagochi on 1986 [3]. DTC is the 

simple control structure and its offers fast torque and flux 

control by instantaneous voltage vectors. DTC controls the 

torque and speed of the motor, which is directly based on the 

electromagnetic state of the motor [4]. The different of DTC 

with FOC are less machines parameter dependence, simpler 

implementation and quicker dynamic torque response [5]. 

DTC contains a pair of hysteresis comparators, torque and flux 

estimators, lookup table for voltage vectors selection and a 3 

phase Voltage Source Inverter (VSI). However, there have a 

few major problems as a variable switching frequency, high 

torque and flux ripples, varying with speed, load torque and 

the hysteresis band [6-8], but the most researchers has been 

focusing to reduce the torque ripple and improving the 

switching frequency [9-12]. A simple dynamic over 

modulation method is employed in DTC with constant 

switching frequency. 

Although improvement has been seen in DTC of 

induction machines, Yong Liu on 2005 [14] and Salih Baris 

on 2007 [15] introduced DTC method for BLDC motor with 

DTC method can applied in BLDC motor. The main 

difference for DTC to be applied for BLDC motor depends on 

the torque estimation and the representation of the inverter 

voltage space vector. In this paper considers the application of 

constant switching frequency with low torque ripple, is 

presented. Fixed switching frequency torque controller, is 

used to replace the conventional comparator hysteresis. A 

fixed switching frequency is obtained by comparing of the 

triangular waveforms with the error signal compensation using 

the PI controller. The operations of the new torque controller 

are similar to the torque controller proposed in [9-13]. The 

maximum switching capability can be fully utilized because 

the switching frequency is independent of the operating 

conditions and equal to the frequency of the triangular 

waveform. At first, the basic principle DTC of BLDC will be 

presented in Section II. It is then followed by Section III to 

discuss DTC with constant switching frequency strategies. 

Section IV presents the simulation results to compare with 

conventional DTC of BLDC. Finally, the conclusion is given 

in Section V. 

II. BASIC PRINCIPLE DTC OF BLDC 

DTC of brushless DC motor system is chosen as a 

method of the drive system because it has the potential to 

further improve the drawback of DTC. The basic concept of 

DTC is uses two comparator hysteresis (i.e one for torque and 

one for flux), switching to the voltage vector table selection 

and a three-phase Voltage Source Inverter (VSI).  

System DTC uses a separate control of the stator flux 

and torque, which is also known as decouple control. The 

purpose of this control method is to minimize the torque and 

flux errors to zero by using hysteresis comparator. The 

hysteresis comparators are not only to determine the proper 

voltage vector selection, but also the voltage vector selected 

period. System performance is directly dependent on the 

estimation of the stator flux and torque. Inaccurate estimates 

will result in the wrong selection of voltage vector. The basic 

method for estimating stator flux is by using the stator voltage. 

The three phases BLDC motor is operated in a two phase 

on fashion which means the two phases that produce highest 

torque are energized based on rotor position while the third 

phase is off. The three phases VSI for DTC BLDC is 
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represented by six individual solid state semiconductor 

switches i.e IGBT/MOSFET as shown in Fig. 1 and the output 

contain six signals (i.e S1-S6) which is either 1 or 0. Unlike 

VSI for DTC induction machine which requires 3 input (Sa, Sb 

and Sc)  gate signal that can be represented by either 1 (upper 

leg switch is ON) or 0 (lower leg switch is ON). 

 

A simulation model is created using Matlab/Simulink 

block based on Fig. 2 which show the overall block diagram 

of the DTC of a BLDC drive system. Torque and flux control 

is implemented for this drive system. The main differences 

between the conventional DTC and DTC BLDC are in the 

voltage vector selection which is using the lookup table from 

[15] as shown in Table 1, definition of the voltage vector as 

shown in Fig. 3 and the formula for torque estimation (4). 

Identification of the six sectors in the α-β plane is based on the 

Hall Effect signals as shown in Table 2. Flux estimation and 

current formula which is used is shown below. 

      
 

 

 

 
[
    

   
    

    

   
   ]   (1) 

 

 
    

   
  

  

  
     

    

   
 

  

  
  (2) 

 

      
 

 

 

 
[
  

  
    

  

  
   ]  (3) 

 

      
 

 

 

 
[                   ]  (4) 

 

                         (5) 

 

                          (6) 

 

                         (7) 

 

                         (8) 

 

      
√ 

 
   [                   ]  (9) 

 

     
√ 

 
   [                              

               ] (10) 
 

TABLE 1. Voltage Vector Selection Table as Proposed in [15]. 

Torque, 

τ 

Sector, θ 

1 2 3 4 5 6 

1 V2 V3 V4 V5 V6 V1 

-1 V5 V6 V1 V2 V3 V4 

TABLE 2. Identification of the Six Sectors In The α-β Plane Based On Hall-

Effect Signals. 

(Ha Hb Hc) (1 1 0) (0 1 0) (0 1 1) (0 0 1) (1 0 1) (1 0 0) 

Sector I II III IV V VI 

 

 

III. DTC WITH CSF SCHEME (DTC-CSF) 

Torque hysteresis controller in DTC is producing the 

large torque ripple. Therefore, various methods have been 

proposed to overcome these problems including the use of 

variable hysteresis bands,  predictive  control  schemes,  space  

vector  modulation  and  intelligent  control  techniques. In 

this paper a new torque controller, which produces torque with 

constant switching frequency and low ripple, has been 

presented. To provide a constant switching frequency and 

reduced torque ripple in DTC, the torque hysteresis controller 

is replaced with a constant frequency torque controller as 

shown in Fig. 4. 
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The constant frequency torque controller (as shown in 

Fig. 4) consists of one triangular generator, comparators and a 

proportional integral (PI) controller. A fixed switching 

frequency is obtained by comparing the triangular waveforms 

with the compensated error signal. The switching frequency is 

limited by the sampling period of the processor; however the 

switching frequency can avoid the switching losses. In 

principle, the function of the error status Tstat torque generated 

from the constant frequency torque control similar to the 

hysteresis comparator, which are; 0 or 1. But there is a 

modification in the lookup table, because in this paper only 

focused on torque controller while the flux is zero. Figure 5 

shows the typical waveforms of the constant frequency torque 

controller. The torque error status (Tstat) generated from the 

constant frequency torque controller can be described by the 

following equation. 

       {
            
            

} (11) 

where Tc is output of Proportional-Integral (PI) control, C is 

the triangular waveforms, respectively. The triangular 

waveform is 180
0
 out of phase. To establish a constant 

switching frequency, the frequency and peak-to-peak 

triangular waveform has been given a fixed value. This is due 

to set up high triangular waveform frequency to minimize 

torque ripple. Proportional integral (PI) controller, the gain Kp 

and Ki values are limited to ensure the absolute slope of the 

output signal, Tc does not exceed the absolute slope of the 

triangle waveform. This is to ensure proper operation of the 

control torque at a constant switching frequency and at the 

same time to avoid selecting the wrong voltage vector, for a 

variety of operating conditions. 

IV. SIMULATION RESULTS 

To study the performance of the DTC of BLDC motor with 

the modified torque controller and the hysteresis-based 

controller were performed using the MATLAB/SIMULINK 

simulation package.  The sampling time used for this system is 

50μs and the simulation time is 1 sec. The hysteresis band for 

torque is set at 0.5 N.m and flux reference is set at 0 N.m/Wb. 

Meanwhile Vdc is set at 72 V, torque reference is set at -0.5 

N.m and 0.5 N.m. The parameters of the BLDC motor are 

shown in table 3. 

TABLE 3. Control and Motor Parameters Values 

Control System 

Torque Hysteresis band 0.5 Nm 

Sampling time 1 μs 

Frequency 1 kHz 

Gain Proportional-Integral (PI) controller 

Kp 2.41 

Ki 900 

BLDC Motor 

C 
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T
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Fig 5.  Typical waveform of the constant frequency torque controller. 

Fig 4.  Constant frequency torque controller 
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Fig. 2.  Block diagram of DTC of BLDC using Matlab/Simulink 
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Stator resistance, Rs 11.4 Ω 

Stator inductance 43.3 mH 

Flux linkage established by magnets  0.19 V.s 

Torque constant 1.4 Nm/A 

Moment of inertia 0.0422 Kg.m
2
 

Friction factor 0.001 Nms 

Pole pairs 4 

 
       

Fig. 6 shows the result of torque (N.m) response for a step 

input of torque reference for hysteresis controller DTC and 

constant switching frequency controller DTC. A reference 

torque which are set at -0.5 N.m during the start up of the 

simulation and a step change of 0.5 N.m is applied at the 

simulation time on 1 second. In both method, estimated torque 

tracks the reference value accurately.  From fig. 6 (a) and (b) 

that in constant switching frequency controller based DTC, the 

torque ripple is lesser than in hysteresis based DTC. 

Moreover, it shown the dynamic performance as good as the 

hysteresis controller based DTC. The torque ripple can be 

reduced by increasing the frequency of the carrier wave. 

Fig. 7 (a) shows the simulation result of the estimated 

torque with torque reference in the upper trace and torque 

status in the lower trace for hysteresis controller. Fig. 7(b) 

shows the tringular carriers with the compensated torque error 

signal (Tc) in upper trace and torque erroe status in lower trace 

for the constant switching frequency controller. The modified 

torque controller have the condition of the torque error, as 

follows; 

       {
            
            

} (12) 

 

 

V. CONCLUSIONS 

This paper presents a constant switching frequency torque 
controller based DTC of brushless DC (BLDC) motor. By 
using constant switching frequency controller, the switching 
frequency of the inverter also becomes constant at 1 kHz. As a 
result, the torque ripple is reduced by replacing the torque 
hysteresis controller with the constant switching frequency 
controller. Without sacrificing the dynamic performance of the 
hysteresis controller, the modified scheme gives constant 
switching frequency.  This work can be implemented using 
DSP. The work can be extended by increasing the switching 
frequency above audible range. This  is  an  effective  way  to  
shift  the  PWM  harmonics  out  of human  audible  frequency  
range. 

ACKNOWLEDGMENT 

  The authors would like to Ministry of Higher Education 
(MOHE) and Universiti Teknikal Malaysia Melaka (UTeM) 
for providing the research grant ERGS/2012/FKE/TK02 
/02/3/E00011 for this research. 

Fig 7.  (a) Hysteresis based (b) Constant switching frequency controller 

T
o

rq
u

e 

(N
.m

) 
T

st
at

u
s 

t(s) 

(a) Upper trace- Reference and estimated value of torque, lower trace- 

Torque error status 

(b) Upper trace- Carrier wave and controlled torque error (Tc), lower 
trace- Torque error status 

 

t(s) 

0.48 0.485 0.49 0.495 0.5 0.505 0.51 0.515 0.52

-1

-0.5

0

0.5

1

0.48 0.485 0.49 0.495 0.5 0.505 0.51 0.515 0.52

0

0.2

0.4

0.6

0.8

1

0.48 0.485 0.49 0.495 0.5 0.505 0.51 0.515 0.52

-1

0

1

2

0.48 0.485 0.49 0.495 0.5 0.505 0.51 0.515 0.52

0

0.2

0.4

0.6

0.8

1

T
st

at
u

s 
T

o
rq

u
e 

er
ro

r 
(N

.m
) 

t(s) 

t(s) 

Fig 6.  Simulation results of Torque Estimation (a) Hysteresis based (b) 
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